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SUMMARY 
Finite elements using higher-order basis functions in the spirit of the QUICK method for cpnvection- 
dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new 
internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior 
and upwind to the element domain. Applied with linear test functions to the weak statements for convection- 
dominated problems, a family of Petrov-Galerkin finite elements is developed. Quadratic and cubic versions 
are demonstrated for the one-dimensional convection-diffusion test problem. Elements of up to seventh 
degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and 
non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a 
streamfunction-vorticity formulation of the Navier-Stokes equations for a driven cavity flow test problem. 
With some minor reservations, these elements are recommended for further study and application. 
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INTRODUCTION 

Numerical modelling of practical convection-dominated problems arising in fluid mechanics, heat 
transfer, water resources and other fields has proven difficult. Severe restrictions on mesh or grid 
spacings associated with centred finite difference or standard Galerkin finite element 
discretizations are, in general, relaxed through the use of upwind finite differences or 
Petrov-Galerkin finite elements. The common consequence is the introduction of an artificial or 
numerical diffusivity, which may cause an excessive loss of solution accuracy.', Skew3 upwind 
and streamline4 methods have been devised to limit the artificial diffusion to  the flow direction 
only. 

A somewhat different approach is taken in the QUICK (quadratic upwind interpolation for 
convective kinematics) scheme of Leonard.' This method uses a higher-degree upwind-weighted 
interpolation for the convected quantities at  control volume boundaries to obtain a reliable and 
accurate approximate solution. This method provides a valuable alternative to upwind and skew 
upwind schemes and has been shown to give better results in certain instances.6 In other cases, 
however, skew-upwinding methods have been found to  be ~upe r io r .~  It appears that the major 
difficulty with the QUICK method is in its implementation for multidimensional problems. The 
simple one-dimensional interpolations usually performed appear to give less accurate results and 
more stability and convergence difficulties for problems in which the flow direction is significantly 
skewed to the mesh orientation. In addition, the method lacks consistency, with different orders of 
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interpolation applied to the same variable over different boundaries and over the interior of the 
control volume. 

At present there appears to be no analogue in the finite element literature to the QUICK 
method. It is the purpose of this paper to present a finite element inspired by this approach and 
demonstrate its behaviour for a few test problems. While based on the idea of upwind 
interpolation, the proposed method offers the advantages associated with a finite element 
implementation. Firstly, it allows a consistent treatment of all variables and terms in the governing 
equations. Secondly, it allows direct generalization to higher dimensions and higher orders of 
interpolation. Finally, it allows the geometric flexibility of the finite element method. The upwind 
basis method is therefore not an attempt to duplicate the QUICK scheme in a finite element 
context but aims rather to exploit the idea of upwind interpolation to its fullest potential. 

UPWIND BASIS FUNCTIONS 

Most finite element formulations of convection-dominated problems are based on a 
Petrov-Galerkin approach wherein the test functions v(x) are upwind-weighted modifications of 
the basis functions f(x). The modification is selected to extract a diffusion effect proportional to a 
measure of the grid spacing in discrete form from the convection terms of the governing equation. 
The magnitude of the modification, and thus the artificial diffusion, is controlled by one or more 
arbitrary parameters which may be optimized according to specific 

The present study takes a different approach by introducing new, upwind-weighted, basis 
functions. Physically, it is reasonable that the value of a convection-dominated variable within an 
element should depend more heavily on upstream nodal values than on downstream nodal values. 
This may be accomplished by increasing the degree of the basis functions. Completeness of the 
higher-degree polynomial interpolation is attained by slightly relaxing the finite element tradition 
of purely local basis functions and introducing 'super-local' basis functions which include an effect 
from a node or nodes external, but close, to the element under consideration. For example, a one- 
dimensional element spanning the space between two nodes could support a complete quadratic 
variation over its interior if a third (upwind) nodal value and associated basis function were 
included. The basis functions for such an element (flow in positive co-ordinate direction) would be 
similar to those of a standard quadratic element in terms of the local co-ordinate 5 :  

In the same way, cubic basis functions may be developed relying on two additional upwind nodal 
values: 

The node ordering and graphical representations of the local functions over an element and global 
functions for a node are shown in Figure 1.  

The upwind basis function concept generalizes easily to even higher-degree elements and higher 
dimensions. 
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Figure 1. Upwind basis functions: (a) local quadratic; (b) global quadratic; (c) local cubic; (d) global cubic 
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TEST FUNCTIONS AND DISCRETIZATION O F  A MODEL PROBLEM 

Several possibilities may be considered for test functions. A Bubnov-Galerkin discretization may 
be accomplished using the upwind basis functions themselves or, alternatively, the customary 
linear functions would yield a Petrov-Galerkin approach. 

Consider the one-dimensional, steady, convection-diffusion boundary value problem 

( 3 )  

4 (x = 0) = 0, 4 ( x = L ) = l ,  

where U is the velocity and D is the diffusivity. Standard weighted residual procedures, using 
piecewise continuous basis and test functions f and v, yield the discrete weak statement 

(C+K)@=O, (4) 
where .=loL Uv-dx, df 

.=lo Ddxdxdx dv df 

dx 

and 

is the approximate solution in terms of nodal values 0. 
Evaluating the integrals by assembling element contributions is straightforward upon 

specification of the test functions and the spatial discretization. For the purpose of illustration take 
U and D as positive constants and elements of equal length h. 

For a Bubnov-Galerkin scheme using quadratic upwind functions (QUBG) the element 
matrices are given in the Appendix. Assembling the jth row of (C + K )  leads to the following 
discrete equation: 

U D 
- ( @ j - 2  - 8 Q j -  + 8 @ j + l  - @ j + 2 ) + - ( @ j - 2  - 16mj- + 3 0 Q j -  l6Qj+ + @ j + 2 ) = 0 .  ( 8 )  12 12h 

The expressions may be recognized as fourth-order centred finite difference representations for the 
first and second derivatives. Schemes based on such higher-order finite differences have enjoyed 
some popularity for convection problems, and the present formulation adds finite element 
advantages of geometric flexibility and boundary condition handling (at outflow boundaries at 
least). They still suffer, however, from the unreliability of any centred formulation. 

A Petrov-Galerkin family of elements may also be defined by using standard linear test 
functions. In this case only two test functions are non-zero over an element (of any degree) while 
the number of basis functions varies, resulting in non-square element matrices (Appendix). For the 
quadratic upwind basis (QUPG), assembling one row of the global matrices as above results in the 
following equation: 
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For the cubic upwind basis functions (CUPG) the following discrete equation is obtained: 

U D 
- ( - @ j - 3  + 6 @ j - 2 - 2 4 @ j p  1 + l O @ j + 9 @ j +  I)+-( - @ j -  1 + 2 @ j - @ j +  1)=0. 
24 h (10) 

The diffusion terms are unaffected compared with a standard linear finite element formulation, 
while a Taylor series expansion of the convection terms reveals that both methods give second- 
order-accurate approximations for the first derivative. Combining the Taylor series expansions 
for the individual terms gives the actual differential equation modelled by the QUPG 
discretization: 

The equation modelled by the CUPG scheme is 

As may be observed by recursive substitution, the QUPG method gives an overall third-order- 
accurate discretization while the CUPG scheme is fourth-order-accurate. 

A comparison with the QUICK algorithm is of interest at this point. Using quadratic upwind 
interpolation for the convective flux of 4 at the control volume boundaries5 under the same set of 
conditions as above, the following discrete equation is obtained: 

( 1 3 )  
U D 
8h h - ( @ j - 2  - 7 @ j -  1 + 3 @ j + ( j +  1 ) + ~ ( - @ j -  1 + 2 @ j - @ j +  l)=o. 

The modelled equation is then 

The QUICK method is therefore of second-order accuracy overall. Differing signs on the second- 
and third-order error terms indicate partial cancellation and higher-order accuracy near a cell 
Peclet number of 2/3. 

An alternative form of the QUICK algorithm proposed by Leonard' uses a third-order- 
accurate expression for the first derivative over the same four nodes: 

U D 
- ( @ j - 2 - 6 @ j - i +  3 @ j + 2 @ j +  i ) + - ( - @ j -  1 + 2 @ j j - @ j +  1)=O. 
6h h2 (15 )  

The modelled equation for this case is 
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Despite the improvement in the accuracy of the convective term, the method is only of second- 
order accuracy overall. In fact, the leading error term is twice as large as for the first QUICK 
scheme. Cancellation and fourth-order accuracy near a cell Peclet number of unity are predicted in 
this case. 

Convergence in the L, norm of these methods for the above convection-diffusion problem is 
shown in Figure 2(a). The overall Peclet number ( P e =  U L / D )  is 1000. N is the number of nodes 
used in the discretization and the L,  norm is calculated by numerical integration of 

with 4 given by the analytical solution. 
For the QUPG method the upstream boundary is handled with a single linear Galerkin 

element, and for the CUPG scheme the first element is a linear Galerkin element and the second 
element is a QUPG element. Note that no special treatments are required at the downstream 
boundary. Standard linear Galerkin (LG), quadratic Galerkin (QG) and optimal (exact nodal 
values) Petrov-Galerkin (PG) are also shown for comparison. Figure 2(b) shows the convergence 
of the maximum error in nodal values (except for Petrov-Galerkin) and also includes the first 
mentioned QUICK scheme. 

The orders of accuracy derived above are confirmed by the convergence rates of the maximum 
nodal error. The local ‘superconvergence’ of the QUICK method is also confirmed. The 
asymptotic convergence rates of the QUPG and CUPG methods in the L, norm are also 
confirmed to be commensurate with the degree of the respective basis functions. More importantly 
perhaps, the error remains limited for large element Peclet number (Pe ,  = Uh/D).  
At N = 10 (Pe,= 100) the L ,  error norms for the PG, QUPG and CUPG methods are 0.1820, 
0 1764 and 0.1426 respectively. The form of the QUPG and CUPG solutions for this discretization 
is shown in Figure 3. 

The computed values oscillate but the magnitude and extent of the oscillations are limited. The 
upwind finite element method appears to provide reliable solutions to this simple but very 
demanding problem, while improving rather than degrading the order of accuracy and 
convergence compared to the Galerkin method. In particular no artificial diffusion in the form of a 
first-order (in h )  truncation error has been introduced. 

SOLUTION REFINEMENT USING HIGHER-ORDER UPWIND ELEMENTS 

The upwind (or otherwise extended) basis finite elements offer an interesting possibility for 
solution refinement. The degree of the polynomial approximation for an element may be increased 
by incorporating more externally based functions. It should be possible to obtain better solutions 
by locally increasing the order of approximation in regions of rapid change without increasing the 
number of unknowns to be solved for. Only the local bandwidth or profile height of the global 
matrices would change. Extra computational effort would be minimal. Iterative refinement 
methods using the previously factored matrix could be easily devised. 

The effectiveness of this approach is indicated by the results of a numerical experiment shown in 
Table I. The problem is as above with Pe = 1000 and N = 40. All elements except the last are linear 
Galerkin elements. The last element is a successively higher (up to seventh) degree upwind basis 
element. 

Figure 4 shows graphically the improvement in the approximate solution obtained. 
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Figure 3. Quadratic and cubic upwind solutions for the one-dimensional convection-diffusion test problem; Pe, = 100. 
Key: +, QUPG, x ,  CUPG 

Table I. Effect of higher-degree elements 

Error 

Degree of last element in L, norm max. nodal error 

01588 0.855 
00989 0.486 
00730 0.323 
00579 0.225 
00480 0.159 
00413 0.111 
00367 0.076 

0.5 0.6 0.7 0.8 0.9 1 0  

Figure 4. Effect of using higher-degree basis elements; Pe,,=25. Degree of last element: A, 1; x ,  3; B, 7 
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LINEAR ADVECTION 

The finite element method applied in a consistent way to transient problems, in contrast to most 
finite difference and finite volume methods, results in non-diagonal mass and capacity matrices. 
This leads to improved accuracy in the modelling of advective phenomena in particular. In this 
section the use of a consistent formulation for transient advection problems based on upwind 
elements is demonstrated. 

Consider one-dimensional advection of a single scalar quantity 4(x, t) at a constant (positive) 
velocity U ,  modelled by the following problem: 

and periodic boundary conditions. The exact solution at any time t is simply a translation of 40(x) 
a distance of Ut. Any numerical dissipation introduced by the computational scheme will appear 
as a damping of the original profile. Dispersion errors will also occur as the shorter Fourier 
components of the original profile propagate at incorrect phase velocities. 

Standard procedures applied to equation (18) over the domain R yield the semidiscrete weak 
statement 

d@ 
d t  

M-+ C @=O, (19) 

where 

M =joL vf dx, (20) 

C is as defined in equation (5) and &(x, t)=f(x) @(t). M may be calculated by assembly of the 
element matrices (Appendix). The actual equations modelled by the semidiscrete equation above 
are as follows: 

for the QUPG discretization and 

for the CUPG discretization. Recursive substitution indicates fourth- and fifth-order accuracies 
for the respective semidiscrete schemes. It is well known that a similar analysis applied to a linear 
Galerkin formulation also leads to a fourth-order-accurate semidiscrete algorithm. The leading 
error term, however, is four times as large as that for the QUPG method. 

Specification of a time integration algorithm for the solution of the ordinary differential 
equations is required to complete the formulation of this test problem. For comparison purposes a 
trapezoidal rule (Crank-Nicolson) implicit method will be used. Figure 5 shows the dissipation 
and dispersion ratios (numerical/exact) as a function of discretization ( N ,  = number of nodes per 
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wavelength) obtained from a Fourier modal analysis of the resulting recursion relations at 
Courant numbers (Cr = UAt/h)  of 0.1 and 0.5. Analysis of the QUPG and CUPG methods is 
straightforward since all nodes are treated identically (in contrast to the usual higher-order 
elements). Results for the linear Bubnov-Galerkin (LG) scheme and a consistent Petrov-Galerkin 
(PG) method with upwind weighting set to 025 and trapezoidal rule time integration are also 
shown for comparison. 

The particular choice of upstream weighting for the Petrov-Galerkin method (very close to the 
optimal semidiscrete value of 1/,/15) gives essentially equivalent dispersion to the QUPG scheme. 
The dissipation of the QUPG method is, however, more selective, preserving the four- to ten-node 
wavelengths longer. The QUPG method is definitely superior to the linear Galerkin method, 
providing better dispersion characteristics and dissipation of shortest wave components. The 
CUPG scheme shows modest improvement over the QUPG method in both dissipation and 
dispersion. 

Figure 6 shows the results of application of the above four schemes to an advection test problem 
at Cr = 0.24. These results confirm the conclusions of the Fourier analysis. The CUPG method in 
particular gives a peak reduction of less than 5%. 

To take advantage of the high-order accuracy inherent in the semidiscrete scheme, a high-order 
temporal discretization should be used. Second-order-accurate temporal schemes such as 
Crank-Nicolson are suboptimal for even linear finite element spatial discretizations. Higher-order 
time-stepping schemes such as the Euler-Taylor-Galerkin (ETG)9 or Euler-characteristic- 
Galerkin (ECG)" have been devised with remarkable improvements in performance. An 
analogous set of high-order algorithms should be possible based on the QUPG and CUPG 
discretizations. It is interesting that the QUPG method naturally incorporates the upstream node 
and third-order spatial difference that appears in the Taylor weak statement formulation.' The 
element matrix for 

is included in the Appendix. 

NON-LINEAR ADVECTION-DIFFUSION 

A convenient test problem for the evaluation of numerical schemes intended for fluid mechanics 
applications is Burger's equation: 

This equation may lead to shock (in the sense of a gradient steeper than the mesh can display) type 
solutions as the element Reynolds number (Re, = uh/D) becomes large. The propagation velocity 
of such a shock is simply the average of the upstream and downstream velocities u1 and u2. In 
particular, if the magnitudes of u1 and u2 are equal and the directions are opposite, a stationary 
shock will result. Figures 7(a) and 7(b) show the steady state solution obtained for the initial and 
boundary conditions 

u(0, t)=1, u(1, t)' - 1, 

using QUPG and CUPG elements (h = 0 1) respectively. 
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These methods capture the shock but, as might be expected from Figure 3, do not give 
monotonic solutions for large element Reynolds numbers. The disturbance created is, however, 
limited in magnitude and, especially for the cubic basis, is dissipated very quickly away from the 
shock. 

A FLUID FLOW APPLICATION 

Generalization of the upwind basis elements to higher dimensions and more complicated and 
interesting problems is straightforward. As a demonstration consider a streamfunction-vorticity 
formulation of two-dimensional incompressible flow of a viscous fluid. The equations are 

where $ is the streamfunction which is related to the velocity components u and v by 

= a*/ay, v = - a*/ax, (27) 
and w is the vorticity given by 

A popular problem for which solutions are available and which tests the performance of a 
method in a recirculating flow is the driven cavity problem. The domain is square with sides of unit 
length and the appropriate boundary conditions are * =o, = - a2$/an2 (29) 

on all sides with n the inward normal direction. Since the present calculation is restricted to a 
regular orthogonal mesh, the latter boundary condition is reasonably well approximated by 

where the subscript 'b' denotes a boundary nodal value and the subscript 'i' denotes the value at 
the first inside node (distance of h normal to the boundary). U is the tangential boundary velocity 
which is zero on the bottom and sides and unity on the top of the cavity. At the top corners the 
value is undetermined. 

The two-dimensional QUPG shape functions were developed simply as tensor products of the 
one-dimensional functions. The elements used are shown in Figure 8. 

The nine-node element combines quadratic functions in both directions, while the six-node 
element (used where the flow direction is away from a boundary) uses linear functions in the short 
direction. Test functions are the standard two-dimensional chapeau functions. The upwinding 
direction is determined from differences of + along the element sides and the element node 
orderings are rotated accordingly. No attempt is made to insure inter-element continuity along 
lines of flow direction change. 

A uniform mesh of 20 by 20 elements and a mesh of 21 by 21 elements of size graded by a 
geometric factor of 1.2 increasing away from the sides were used. The graded mesh calculation was 
intended to reduce the adverse effects of the vorticity boundary condition and the presence of 
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Figure 8. Two-dimensional quadratic upwind elements 

lower-order elements on parts of the boundary, and to attempt to resolve the thin boundary layers 
present. Isoparametric mapping was used for the graded mesh. Some care was therefore required 
in the mesh gradation (similar to selection of internal node location in conventional finite 
elements). Contour plots of vorticity and streamfunction for Re= 1000 on the graded mesh are 
shown in Figure 9. 

The contouring was performed element by element using the actual upwind basis functions. 
Minor discontinuities are noticeable at points of flow direction change, especially near steep 
gradients. 

The vortex centre values are compared with the results of Schreiber and Keller12 in Table I1 and 
are found to be in good agreement, especially for the graded mesh. The reference values were 
obtained from a finite difference solution on a grid of 141 by 141 lines, except for the primary 
vortex values which were obtained by Richardson extrapolation of a sequence of grids (100, 120 
and 141 lines in each direction). 

The above results were obtained using U = 1/2 at the top corners. Very little effect was observed 
by changing this. Figures lO(a) and l q b )  show a detail of the top right corner of the graded mesh 
for U = 1/2 and U = 0 respectively. The nodal values of vorticity are shown superimposed on the 
streamfunction contours. 

Only the vorticity values very close to the corner are significantly affected, while the 
streamfunction contours are virtually identical. For comparison a detail of the top corner of the 
uniform mesh is also shown in Figure lO(c). The larger spacing has clearly affected the accuracy of 
the boundary vorticity values, and significant oscillation of the vorticity values is evident in the 
corner impingement region. The streamfunction contours remain quite reasonable, however. 

COMPUTATIONAL ASPECTS 

The concept of local shape and test functions is considered fundamental to the finite element 
method. It may seem that the introduction of non-local functions would violate some essential 
premise and invalidate the approach. It should be remembered, however, that the finite element 
method is distinguished among general weighted residual methods by its computability. That is, 
the locality of the functions is essentially a convenience. In this regard, the proposed ‘super-local’ 
basis functions are easily accommodated. The program used for these test problems was an 
existing finite element code modified only to include new element matrix and connectivity table 
generation routines. No less would be required for any new element. 

Since the equation solver used (LU decomposition, profile storage) assumes a symmetric matrix 
profile, element matrices were padded with zeros to make them square. Storage and execution 
times experienced are therefore not indicative of the minimum cost of the method. Indeed, since 
the dot products performed in an LU decomposition are of a length equal to the shorter of the 



Figure 9. Driven cavity solution for Re= lo00 by quadratic upwind elements: (a) vorticity; (b) streamfunction 
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column and row involved, the potential time savings resulting from considering the non- 
symmetric profile may be significant. This would be especially true for higher-order elements and 
higher dimensions. 

CONCLUSIONS 

Upwind basis finite elements have been presented and have been shown to give good results for a 
number of convection-dominated test problems. As indicated by the L, norm, these elements 
emphasize and take full advantage of the basic finite element premise of consistent, piecewise 
functional solution approximation. By contrast, in application, they act somewhat like a finite 
difference method, requiring special treatment at some boundaries and working best and most 
conveniently on regular, carefully graded meshes. 

Table 11. Driven cavity vortex centre value comparison 

Vortex 
QUPG QUPG 
(graded) (uniform) Ref. 12 

Primary t,b -0.1228 -01265 -0.1 189 
(centre) w -2.058 -2.194 - 2.068 

Secondary t,b 000169 0.00 1 19 0.00 1 70 
(lower right) w 1.058 0695 0-999 

(lower left) w 0.587 0.23 1 0.302 
Tertiary t,b OW028 000020 090022 

142.30 

10.20 

1.61 

1.91 

2.97 

4.48 
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Figure 10. Detail of top right corner of driven cavity solutions for Re= lo00 by quadratic upwind elements: (a) U =  1/2; 
(b) U = 0; (c) uniform mesh, U = 1/2. 
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In contrast to the QUICK method, the idea of upwind interpolation is applied consistently to 
all terms of the governing equation. Solutions to transient problems in particular benefit from this 
approach. 

In contrast to most Petrov-Galerkin methods, there are no upwinding parameters introduced. 
All that is required is the flow direction for a particular element. While this reduces the possibility 
of 'tuning' a solution, it simplifies application from a user's perspective. 

The elements introduced are more computationally expensive than linear Galerkin and 
Petrov-Galerkin elements but are less expensive than the equivalent higher-order elements, 
especially if optimized methods are used. The greatest utility of these elements may lie in 
refinement (local or global) of coarse mesh solutions. The discretization would remain the same 
but the connectivity and nodal coupling would increase. 

Broader application of 'super-local' shape functions should be investigated. For problems not 
dominated by convective effects, the fourth-order finite differences resulting from use of the 
quadratic upwind basis in a Galerkin formulation are interesting and encouraging. Such methods 
may provide insights into the relationships between finite difference and finite element methods. 

Although many questions, especially those of reliability and efficiency, remain to be answered, 
upwind basis elements may provide a useful alternative in practical modelling applications. 

APPENDIX: ELEMENT MATRICES 

The one-dimensional element matrices used in the analysis of the upwind basis finite elements are 
listed below. They are defined in terms of the element test functions v, and basis functions f, as 

Quadratic upwind Bubnov-Galerkin 

0 0 0  

-4  3 -9  

ce=" 0" -1  0 y] +A[ -1  0 0 1 - 1  ;], 
Ke=[ 0 0 0  0 1 41 +A[ -2  1 -2 4 41. 1 

0 -1 1 -1 

0 -1  1 -2 
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Quadratic upwind Petrou-Galerkin 

-1 2 -1 1 ’ Me=:[ 0 1 21.; [ 1 0 2 1  - 1  2 - 1  

Ke=[ O 0 -1 -‘I 1 ’ 

s,=[ -; -; - ; I .  

403 

Cubic upwind Petrov-Galerkin 

(42) 1 Me=-[ 1 0 0 2 1  I+&[ - ’  - ‘ I  [ 7 -21 21 - 7  
6 0 0 1 2  0 - 1  2 -1 ‘360 8 -24 24 - 8  ’ 

I+[ O 0 O 0 -1 -;I. (44) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

1 1 .  
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